1. Approximation and Taylor's formula. Let f be the function defined on \mathbb{R}^{2} by $f(x, y)=$ $\exp (\sin (x) \cos (y))$. Show that the error made in computing $f(3.16,0.02)$ by approximating $f(x, y)$ by $f(\pi, 0)+(3.16-\pi) \frac{\partial f}{\partial x}(\pi, 0)+0.02 \frac{\partial f}{\partial y}(\pi, 0)$ is smaller than $\frac{16 e}{10^{4}}$.
2. Extrema of functions on \mathbb{R}^{2}. Find local extrema and their types for the following functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) $(x, y) \mapsto x+y+x^{2}+y^{2}+x y$
(b) $(x, y) \mapsto y^{2}-x^{3}$
3. Let f be a \mathcal{C}^{2} function defined on \mathbb{R} such that $f(0)=0$ and that $f^{\prime}(0) \neq 0$. We put $F(x, y)=$ $f(x) f(y)$ for every $(x, y) \in \mathbb{R}^{2}$. Is $(0,0)$ a critical point of F ? Is it a local (global) extremum?
4. Laplacian and Hessian matrix. Let f be a \mathcal{C}^{2} function defined on an open subset of \mathbb{R}^{n}.
(a) Check that the Laplacian of f at a point x is the trace of the Hessian matrix at x.
(b) We assume that x is a local minimum (resp. local maximum) of f, show that $\Delta f(x) \geq 0$ (resp. $\Delta f(x) \leq 0$).
5. Functions with non-open domains. Consider a function $f:[0,1] \rightarrow \mathbb{R}$. What is the meaning of " x is a local max of f "? Find such an f showing that the implication "local extremum \Rightarrow critical point" is not true for a function whose domain is not open.

- Problems -

6. Global extrema. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function.
(a) Give an example of such an f having a local min that is not a global min.
(b) Show that if $f(\mathbf{x}) \xrightarrow{\|\mathbf{x}\| \rightarrow \infty} \infty$, then f has a global min.
7. Product of \sin in a triangle. Let T be a triangle whose angles are x, y and z. We want to find the points $(x, y, z) \in[0, \pi]^{3}$ where the product $P(x, y, z)=\sin (x) \sin (y) \sin (z)$ has its global maximum.
(a) Find a function g defined on a compact set $K \subset \mathbb{R}^{2}$ such that $g(x, y)=P(x, y, z)$ for every (x, y, z) corresponding to a triangle. Justify that g admits a global maximum.
(b) Is the global maximum of g obtained on the boundary of K ?
(c) Compute the critical points of $g_{\mid K}$. Conclude.
8. Maximum principle. Let U be an open set in \mathbb{R}^{n} and f a \mathcal{C}^{2} function on U.
(a) Let K be a compact set included in U and $\stackrel{\circ}{K}$ its interior. Show that $f_{\mid \partial K}$ admits a maximum at some $a \in \partial K$.
(b) We assume that $\Delta f>0$ in any point of $\stackrel{\circ}{K}$. Show that $f(a)=\max _{K} f$ and $f_{\mid K ்}<$ $\max _{\partial K} f$.
(c) Show that, if f is harmonic on $\stackrel{\circ}{K}$, then $\min _{\partial K} f \leq f_{\mid K} \leq \max _{\partial K} f$. Hint: Define $f_{\epsilon}(x)=f(x)+\epsilon\|x\|^{2}$ and apply (a).
(d) Show that, if f is harmonic and constant on ∂K, then f is constant on K.
