- Exercises -

- 1. Approximation and Taylor's formula. Let f be the function defined on \mathbb{R}^2 by f(x,y) = exp(sin(x)cos(y)). Show that the error made in computing f(3.16, 0.02) by approximating f(x, y) by $f(\pi, 0) + (3.16 \pi)\frac{\partial f}{\partial x}(\pi, 0) + 0.02\frac{\partial f}{\partial y}(\pi, 0)$ is smaller than $\frac{16e}{10^4}$.
- 2. Extrema of functions on \mathbb{R}^2 . Find local extrema and their types for the following functions $\mathbb{R}^2 \to \mathbb{R}$.
 - (a) $(x,y) \mapsto x + y + x^2 + y^2 + xy$
 - (b) $(x, y) \mapsto y^2 x^3$
- 3. Let *f* be a C^2 function defined on \mathbb{R} such that f(0) = 0 and that $f'(0) \neq 0$. We put F(x, y) = f(x)f(y) for every $(x, y) \in \mathbb{R}^2$. Is (0, 0) a critical point of *F*? Is it a local (global) extremum?
- 4. Laplacian and Hessian matrix. Let f be a C^2 function defined on an open subset of \mathbb{R}^n .
 - (a) Check that the Laplacian of f at a point x is the trace of the Hessian matrix at x.
 - (b) We assume that x is a local minimum (resp. local maximum) of f, show that $\Delta f(x) \ge 0$ (resp. $\Delta f(x) \le 0$).
- 5. Functions with non-open domains. Consider a function $f : [0, 1] \rightarrow \mathbb{R}$. What is the meaning of "*x* is a local max of *f*"? Find such an *f* showing that the implication "local extremum \Rightarrow critical point" is not true for a function whose domain is not open.

— Problems —

- 6. **Global extrema.** Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function.
 - (a) Give an example of such an *f* having a local min that is not a global min.
 - (b) Show that if $f(\mathbf{x}) \xrightarrow{\|\mathbf{x}\| \to \infty} \infty$, then *f* has a global min.
- 7. Product of sin in a triangle. Let *T* be a triangle whose angles are *x*, *y* and *z*. We want to find the points $(x, y, z) \in [0, \pi]^3$ where the product P(x, y, z) = sin(x)sin(y)sin(z) has its global maximum.
 - (a) Find a function g defined on a compact set $K \subset \mathbb{R}^2$ such that g(x, y) = P(x, y, z) for every (x, y, z) corresponding to a triangle. Justify that g admits a global maximum.
 - (b) Is the global maximum of *g* obtained on the boundary of *K*?
 - (c) Compute the critical points of $g_{|K}$. Conclude.
- 8. Maximum principle. Let U be an open set in \mathbb{R}^n and f a \mathcal{C}^2 function on U.
 - (a) Let *K* be a compact set included in *U* and \mathring{K} its interior. Show that $f_{|\partial K}$ admits a maximum at some $a \in \partial K$.
 - (b) We assume that $\Delta f > 0$ in any point of \mathring{K} . Show that $f(a) = \max_K f$ and $f_{|\mathring{K}} < \max_{\partial K} f$.
 - (c) Show that, if f is harmonic on \mathring{K} , then $\min_{\partial K} f \leq f_{|K} \leq \max_{\partial K} f$. *Hint: Define* $f_{\epsilon}(x) = f(x) + \epsilon ||x||^2$ and apply (a).
 - (d) Show that, if *f* is harmonic and constant on ∂K , then *f* is constant on *K*.